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Abstract

To achieve the ever increasing demand for science re-
turns, extraterrestrial exploration rovers require more
autonomy to successfully perform their missions. In-
deed, the communication delays are such that tele-
operation is unrealistic. Although the current rovers
(such as MER) demonstrate a limited navigation au-
tonomy, and mostly rely on ground mission planning,
the next generation (e.g. NASA Mars Science Labora-
tory and ESA Exomars) aims at “beyond the field of
view” autonomous navigation. Other exploration mis-
sions which cannot rely on human teleprogramming,
will even require activity planning, repair and replan-
ning to be made onboard.

In this paper, we propose and give experimental results
of an original approach for temporal planning and ex-
ecution control, including plan repair and replanning,
fully integrated onboard a robot performing rover ex-
ploration like missions. Our claim is twofold. First
these planning/plan repair methods and techniques are
now mature enough to be considered to solve real world
problems. Second they can be integrated in existing ar-
chitectures and used onboard a fully operational robot,
with currently available hardware.

Introduction

Extraterrestrial exploration rovers have an increasing
need for high level autonomy. If one compares the nav-
igation capabilities of Sejourner and MER, one can al-
ready see that some modest, yet real, navigation au-
tonomy has been introduced. Moreover, higher science
return, and the communication latency of deep space
mission' are pushing to get some of the traditionally
high level activities planning performed on board. For
example in the MER mission, an automated planning
system (MapGen (Ai-Chang et al. 2003)) was used on
the ground to produce the daily activities for Spirit and
Opportunity. The operational results of MapGen are
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1Unlike most navigations on the ground, a comet landing
phase can hardly be suspended.

quite encouraging, as it allowed a 25% increase in sci-
ence returns compared to a human generated plan (Ra-
jan 2004). As of today, the ESA Exomars project (part
of Aurora) aims at having the rover navigating over its
“field of view”, in one day, with navigation decisions
taken on board. NASA MSL will also push the auton-
omy cursor further than for MER. Last, the “Human
on Mars” goal will require the deployment of a large
number of autonomous systems to “prepare” and study
the planet before a human can set foot on it. The “fu-
ture” of exploration rovers and probes clearly lies in an
increased autonomy addressing the problems of action
planning, and plan execution control.

Meanwhile, automated actions planning has made
some progress since the early days of Shakey and
STRIPS. There are now planners able to take into
account time, resources, constraints and to solve real
world problems. Still, planning is only one aspect of
the problem. Plans, even flexible or contingent one,
are bound to fail. Plan repair and replanning are thus
needed to ensure that the system is able to recover from
unexpected plan execution failure.

In this paper we present IxTeT, a temporal plan-
ner which includes an execution controller, as well as
some plan repair and replanning capabilities. The re-
sulting system has been integrated in the LAAS archi-
tecture(Alami et al. 1998) and implemented onboard
Dala, our iRobot ATRV Robot. Such a planner is in
charge of producing plans composed of actions such as
move, science activities (moving and operating instru-
ments), communication with earth and an orbiter or
a lander, while managing resources (power, memory,
etc) and temporal constraints (communication visibil-
ity windows, rendezvous, etc).

Still, the execution of action as simple navigation
task such as a move in an unknown environment implies
complex processes (Lacroix et al. 2003; Goldberg, Mai-
mone, & Matthies 2002): localization, map building,
motion generation, etc. The LAAS architecture (Alami
et al. 1998) and its associated tools provide a support
in order to design and integrate such a complete au-
tonomous system.

Fig. 1 presents the architecture implemented for the
experiment on Dala. The functional level includes all
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Figure 1: The LAAS architecture on Dala, an iRobot
ATRV.

the basic built-in robot action and perception capa-
bilities, encapsulated into controllable communicating
modules. These modules are activated by requests, send
reports upon completion and export data. Tor example,
the POM module computes the best position estimate
from standard (RFLEX) and visual (STEO) odometry,
while the wheels are controlled by RFLEX according to
the reference velocity produced by the reactive motion
planner (P3D). The requests control level filters the re-
quests according to the current state of the system and
a formal model of allowed and forbidden states (see (Py
& Ingrand 2004)).

IxTeT has been integrated in the decisional level and
interacts with the user and the functional level through
a procedural executive (OpenPRS). First, IxTeT pro-
duces a plan to achieve a set of goals provided by the
user. The plan execution is controlled by both procedu-
ral and temporal executives as follows. The temporal
executive decides when to start or stop an action in the
plan and handles plan adaptations. OpenPRS expands
and refines the action into commands to the functional
level, monitors its execution and can recover from spe-
cific failures. It finally reports to IxTeT upon the action
completion.

The paper is organized as follows. The first section

presents the core planner used as well as the 3DC+ al-
gorithm. The following section focuses on the execution
control part of the system as well as the repair and re-
planning mechanism. Then we present the experimen-
tation (rover exploration planning), and the result of
the integration of IxTeT on board the Dala robot. Last,
we compare this work with similar works and present
conclusions and possible prospectives.

The planner

The planner in IxTeT is a lifted POCL temporal plan-
ner based on CSPs (Laborie & Ghallab 1995). Its tem-
poral representation describes the world as a set of
attributes: logical attributes (e.g. robot_position(?r)),
which are multi-valued functions of time, and resource
attributes (e.g. battery_level()) for which one can spec-
ify borrowings, consumptions or productions. We note
LgcA and RscA, respectively the sets of logical and re-
source attributes. LgcA, and RscA, designate the sets
of all possible instantiations of these attributes.

The evolution of a logical attribute value is repre-
sented through the proposition hold, which asserts the
persistence of a value over a time interval, and the
proposition event, which states an instantaneous change
of value. The propositions use, consume and produce
respectively specify over an interval the borrowing, the
consumption or the production at a given instant of a
resource quantity.

task MOVE(?initL,?endL)(st,et){
?initL,?endL in LOCATIONS;
event(ROBOT_POS():(?initL,IDLE_POS),st);
hold(ROBOT_POS():IDLE_POS,(st,et)); distance_uncertainty(?du);
event(ROBOT_POS():(IDLE_POS,?endL),et); 2dist = 72di * 2du;
event(ROBOT_STATUS():(STILL,MOVING),st); speed(?s);
hold(ROBOT_STATUS():MOVING,(st,et)); 2dist = 7s * ?duration;
event(ROBOT_STATUS():(MOVING,STILL),et); contingent ?duration = et — st;

hold(PTU_POS():FORWARD,(st,et));

variable ?di,?du, ?dist;
variable ?duration;
distance(?initL,?endL,?di);

HatePreemptive

Figure 2: Example of move action model.

task MOVE_PTU(?initL,?endL)(st,et){
timepoint end_heat;
?2initL,?endL in PTU_POSITIONS;
hold(ROBOT_STATUS():STILL,(end_heat, st));
event(PTU_STATUS():(COLD, HEAT),st);
hold(PTU_STATUS():HEAT,(st,end_heat));
event(PTU_STATUS():(HEAT,MOVING),end_heat);
hold(PTU_STATUS():MOVING,(end_heat,et));
event(PTU_STATUS():(MOVING,COLD),et);

hold(PTU_INIT(): TRUE,(st.et));
hold(PTU_POS():?initL,(st,end_heat));

hold(PTU_POS():PTU_POS_IDLE,(end_heat,et));
event(PTU_POS():(PTU_POS_IDLE,?endL),et);

(end_heat — st) in [10,12];
contingent (et — st) in [16,20];

}latePreemptive

event(PTU_POS():(?initL,PTU_POS_IDLE),end_heat);

Figure 3: Example of move_ptu action model.

As shown on Fig. 2, an action (also called task) con-
sists of a set of events describing the change of the world
induced by the action, a set of hold propositions ex-
pressing required conditions or the protection of some
fact between two events, a set of resource usages, and
a set of constraints on the timepoints and variables of
the action. Note the conteingent keyword used to ex-
press that this duration should not be modified by the
planner.

A plan relies on two CSP managers. A Simple Tem-



poral Network (STN) handles the timepoints and their
binary constraints (ordering, duration, etc.). The other
CSP manages atemporal symbolic and numeric vari-
ables and their constraints (binding, domain restriction,
sum, etc.). Mixed constraints between temporal and
atemporal variables can also be expressed (Trinquart &
Ghallab 2001) (e.g. the relation between the distance,
speed and duration of a move ?dist =7speed * (et — st)).
These CSP managers compute for each variable a min-
imal domain which reflects only the necessary con-
straints in the plan. Thus the plan is least committed
and as much as possible flexibility is left for execution.

The plan search explores a tree 7 in the partial plan
space. In a POCL framework, a partial plan is generally
defined as a 4-tuple (A,C, L, F'), where A is a set of
partially instantiated actions, C' is a set of constraints
on the temporal and atemporal variables of actions in
A, L is a set of causal links? and F is a set of flaws. A
partial plan stands for a family of plans. It is considered
to be a valid solution if all its possible instances are
coherent, that is F' is empty.

The root node of 7 consists of: the initial state (ini-
tial values of all instantiated attributes), expected avail-
ability profiles of resources, goals to be achieved (de-
sired values for specific instantiated attributes) and a
set of constraints between these elements. The branches
of 7 correspond to resolvers (new actions or con-
straints) inserted into the partial plan in order to solve
one of its flaws. Three kinds of flaws are considered:

— Open conditions are events or assertions that have
not yet been established. Resolvers consist in finding
an establishing event (in the plan or a new action) and
adding a causal link that protects the attribute value
between the establishing event and the open condition.
— Threats correspond to pairs of event and hold which
values are potentially in conflict. Such conflicts are
solved by adding temporal or binding constraints.

— Resource conflicts are detected as over-consuming sets
of potentially overlapping propositions. Resolvers in-
clude insertion of resource production action, etc
Thus, a planning step consists in detecting flaws in the
current partial plan, selecting one, choosing a resolver
in its associated list of potential resolvers and insert-
ing it into the partial plan. This planning step is re-
peated until a solution plan is found. When a dead
end is reached (flaws remain but no resolver are avail-
able), the search backtracks on a previous choice. The
algorithm is complete and the flaw and resolver choices
are guided by diverse heuristics discussed in (Laborie &
Ghallab 1995). Note that the search is stopped as soon
as a valid plan is found.

The advantages of the CSP-based functional ap-
proach are numerous in the context of plan execution.

2A causal link a; 2, a; denotes a commitment by the
planner that a proposition p of action a; is established by
an effect of action a;. The precedence constraint a; < a;
and binding constraints for variables of a; and a; appearing
in p are in C.

A [X1 Y] > B A <C, t> > B
v] v]

C D

Figure 4: Two Network Examples

Besides the expressiveness of the representation (han-
dling of time and resources), the flexibility of plans (par-
tially ordered and partially instantiated, with minimal
constraints) is well-adapted to their execution in an un-
certain and dynamic environment. Plans are actually
constrained at execution time. Finally, the planner,
performing a search in the plan space, can be adapted
to incremental planning and plan repair.

3DC+ algorithm

Nevertheles, there are still open problems such as how
to handle the controllability issue. Regular propagation
in STN, and by extension in the atemporal CSP, may
shrink a temporal interval which may not be “control-
lable” by the planner. As a result, the execution may
fail, not because the action model is wrong, but because
the planner took some “freedom” with respect to what
it is allow to control.

The 3DC+ algorithm was first introduced by (Vidal,
Morris, & Muscettola 2001). Fig. 5 presents the general
algorithm illustrated on the two examples on fig. 4.

Five various cases must be distinguished. If one con-
siders the network on the left (fig. 4), with a contingent
link AB:

Precede case This is the case where v > 0. In this
case we must tighten AB to [y — v,z — u].

Unordered case This is the case where u < 0 and
v > 0. In this case and if * < y — v, we must add
a ternary constraint, called a wait, on AB and of
value < C,y — v >. It means that we must wait
y — v after the instantiation of A to instantiate B.
We must also instantiate B at a time consistent with
the constraints and after the observation of C.

If one now considers the network on the right (fig. 4):

Regression of wait Suppose a link AC' has a wait
<C,t>

e If a link DB (including AB itself) with an upper
bound of ¢ exists, then we must add a wait < C,t—
q>on AD.

e If a contingent link DB with B # C' and with p
as lower bound exists, then we must add a wait
<C,t—p>on AD.

General reduction If a link AB has a wait < C,t >
and the lower bound of the contingent link that ends

on C'is [ with [ < t, then we must add a lower bound
of l on AB.



Unconditional wait If a link AB has a wait < C,t >
and the lower bound of the contingent link that ends
on C is [ with [ > t, then we must add a lower bound
of t on AB and suppress the wait which is useless.

1. Compute the minimal STN. If it is not pseudo-
controllable return false.

2. Select any triangle such that v (fig. 4) is non-negative.
Introduce any tightenings required by the Precede case
and any waits required by the Unordered case.

3. Do all possible regressions of waits, while converting un-
conditional waits to lower bounds. Also introduce lower
bounds as provided by the general reduction.

4. If steps 2 and 3 do not produce any more tightenings,
then return true, otherwise return to 1.

Figure 5: 3DC+ Algorithm

We have implemented the 3DC+ algorithm presented
above in IxTeT, and we are thus able to produce plans
which are dynamically controllable with waits. The re-
sulting plans may not be as “efficient” as one produced
without 3DC+, but, as we will see in the example sec-
tion, it is more robust and still more efficient than a
plan where all non controllable actions have been max-
imized.

Temporal executive, plan execution,
repair and replanning

The temporal executive controls the temporal network
of the plan produced by IxTeT by deciding the exe-
cution order of actions execution and by mapping the
timepoints at their execution time. The execution of an
action a with grounded parameters p,, starting time-
point st?®, ending timepoint et®, and identifier i, is
started by sending the command to the procedural ex-
ecutive. If the action is non preemptive, et® is not con-
trollable, and IxTeT just monitors if a is completed in
due time. Otherwise et® is controllable: if the action
does not terminate by itself, it is stopped as soon (resp.
as late) as possible if a is early (resp. late) preemptive.

IxTeT integrates in the plan the reports sent by the
controlled system upon each action completion. A re-
port returns the ending status of the action (nominal,
interrupted or failed) and a partial description of the
system state. If nominal, it just contains the final lev-
els of the resources, if any, used by the action. Other-
wise, it also contains the final values of the other state
variables relevant to the action.

Besides completion reports, IxTeT also reacts to user
requests to insert a new goal and sudden alterations of
a resource capacity.

In any case, while execution is taking place, various
events can forbid further execution of the plan:

— temporal failures The STN constrains each timepoint
t to occur inside a time interval [tgp, typ). Thus two types
of failure lead to an inconsistent plan: the correspond-
ing event (typically, the end of an action) happens too

early or too late (time-out).

— action failure The system returns a non nominal re-
port.

— resource level adjustment If an action has consumed
more or produced less than expected, the plan may con-
tain future resource contentions.

When these occur, IxTeT starts and controls the pro-
cesses of plan adaptation. To take advantage of the
temporal flexibility of the plan, the dynamic replan-
ning strategy has two steps. A first attempt is to repair
the plan while executing its valid part in parallel. If
this fails or if a timepoint times out, the execution is
aborted and IxTeT completely replans from scratch.

Interleaving partial order planning and execution
may insert flaws in the plan. We formally define un-
der which conditions such a partial plan remains exe-
cutable.

Definitions

We extend the previous definition of a partial plan to
the definition of P;: a partial plan partially executed
up to time ¢.

Definition 1 Pt = (RAt,FAt,St,Gt,Ct,Lt,Ft).

RA, is the set of currently running actions (a € RA; if
stl, <t and et?, >t), FA; is the set of future actions
(a € FA, if st? > t). S, represents the state of the
world at time ¢. It is composed of 2 sets: LgcS; contains
the last value of each attribute la € LgcA,, 3 RscLy
contains the level at time ¢ of each resource r € RscA,.
G} is the set of goals not yet completely achieved at
time ¢ (and eventually not established) 4. C; is the set
of constraints on the variables appearing in FA;, RA;,
Sy and Gy. Ly is the set of causal links supporting future
actions. Fj is the set of flaws present in the partial plan
at time ¢.

The level of a resource at a certain time in the future
cannot be computed, since it depends on the partial
order of actions using this resource. But at time ¢ the
past part of the plan is completely instantiated and lin-
earized. Two cases have to be considered: if no running
action modifies r, the exact level can be computed; if at
least one action in RA; requires the resource, only an
estimate is available. We refer the reader to (Lemai &
Ingrand 2004) for the details on how these evaluations
are computed.

A timepoint in the temporal network may correspond
to a goal timepoint or to an action starting or ending
timepoint.

Definition 2 (executable timepoint) A timepoint
T is executable at time t if all timepoints TP that must
directly precede it in the temporal network have already
been executed (T}, = TV, < t), if all positive waits on

8In IxTeT, LgcS; contains the last executed event for
each la.

4In IxTeT, a goal is represented by a grounded propo-
sition hold(Goal Att(g):GoalValue, (st?, et?)). Gy contains
goals such that et?, > ¢.



links with positive upper bound and which ends on T
are enabled and if t € [Tip, Tup)|.

A goal is instantaneously achieved or persistent (achieve
and maintain a property between st9 and et9).

Definition 3 (achievable goal) A  goal g s
achievable at time t if st9 is executable and if

g ¢ Ft-
Let A,{c be the set of actions that are involved in Fy. 5

Definition 4 (executable action) A future action a
is executable at time t if its start timepoint is executable

and if a ¢ A

Definition 5 (executable plan) A partial plan P; is
executable at time t if the constraint networks are con-

sistent and if RA, N Al = 0.

Execution cycle

As previously explained, the system, when boot-
strapped, produces a first plan (let us call it Ezecut-
ingPlan), and will only start execution afterward. The
executive manages the messages received, the actions
timeout, and the timepoints execution. Integrating
messages in FxecutingPlan may partially invalidate it.
If ExecutingPlan contains new flaws, a plan repair con-
sists in keeping the structure of the plan (the ordering
of actions) and taking advantage of the flexibility to
try and find a solution plan. The user defines the max-
imum time allowed for plan repair (u). If plan repair
takes more than u, it is suspended to allow reactivity
to events and concurrent execution of the valid part of
the plan.

Yet, to distribute planning on several cycles raises
two problems:
Which plan does the concurrent execution rely on,
especially if no solution has been found? This plan
has to be executable. At each planning step, the node is
labeled if the current partial plan is executable. When
1 has elapsed, the last labeled partial plan becomes
EzecutingPlan.
Which plan and which search tree the planning pro-
cess rely on in the next cycle? If no change has been
made meanwhile (no timepoint execution, no message
reception), the search tree can be kept as is and further
developed during the next plan repair part. However,
if the plan has been modified, a new search tree
whose root node is the new FExecutingPlan is used, and
the planning decisions made in previous cycles are final.

The following subsections further detail the different
phases of the executive loop. Basically, all modifica-
tions made to EzxecutingPlan have to guarantee that an
executable plan is available after each phase of the cycle.

The determination of A is straightforward in the case
of open conditions and resource conflicts. In a threat case,
an action ap has effects in contradiction with the estab-
lishment of proposition p by the causal link a; = a; and
(ai < ai, < a;) is consistent. A! contains ax and a;.

If this condition does not hold, the cycle is stopped and
a complete replanning is mandatory. During a cycle
without plan repair, FxecutingPlan remains a solution
plan.

Message integration

A message can be a report upon action completion; a
new goal request or a notification of a capacity alter-
ation (we do not detail the two last ones, and refer the
reader to (Lemai 2004) for a complete explanation on
these).

A report is associated with the ending timepoint et®
of the corresponding action a. If the message is re-
ceived inside the bounds [etf,,et?,], et® is set to the
current time ¢ (equivalent to posting the constraint
(et* — origin) = t in the STN). Otherwise, two situ-
ations arise. If there is no flexibility left in the plan, it
is not executable anymore. Else, a new end timepoint,
set to t and constrained to occur before the executable
timepoints, is created and the failed one is relaxed. The
network is then recomputed. In IxTeT, such an oper-
ation keeps the network consistent, since the only con-
straint that can be specified between two actions a and
a’ is a precedence constraint which upper bound is flexi-
ble: (st —et®) in ]0,+ool. If the report contains infor-
mation about the state, S; is updated in the following
way:

Resource level - For each resource r, the report
returns the current “real” level l.. [, is compared to
the forecasted evaluation (see (Lemai & Ingrand 2004))
which are properly updated accordingly. Plan repair
is requested in case of over-consumption and in case of
over-production of a reservoir resource (which may then
overfill).

State variables - LgcS; contains the last value for
each instantiated logical attribute. If the report is nom-
inal, LgcS; is updated with the effects of a expected in
the plan. Otherwise, it is updated with the values re-
turned in the report. A value is not inserted if it leads to
a non executable plan (that is it threatens some propo-
sition of a running action a,). In that case and if a,
is preemptive, its interruption is requested. Else, the
value is inserted and causal links which contradict it
are broken. This update leads to an executable plan
with open conditions on which plan repair can be pro-
cessed.

After message integration, the plan may contain flaws
(open conditions and/or resource conflicts) on a set of
grounded attributes Attf, possibly repaired thanks to
the insertion of new actions. Let us consider Att’ the set
of the attributes appearing in the potentially inserted
actions. Additional causal links, protecting proposi-
tions in the plan on attributes in Att?, have to be bro-
ken to allow the insertion of these actions in the current
plan structure.

The determination of Att' is based on information
given by an abstraction hierarchy verifying the Ordered
Monotonicity Property (Knoblock 1994; Garcia & La-
borie 1995) and generated offline from the model de-



scription. Notably, this hierarchy points out the pri-
mary effects of an operator, which justify its insertion
to solve a flaw. Let us call main attributes of an action
the attributes appearing in its primary effects. Att?, ini-
tialized with Att/, is computed by searching the action
operators for which at least one attribute att,, in Att*
is a main attribute. This operator is partially grounded
(by binding its corresponding parameter with att,,) and
the (eventually grounded) attributes appearing in the
operator and not yet taken into account are added to
Att'. The algorithm proceeds recursively until a fixed
point is reached.

Finally, the partial plan is executable and the sets of
actions that are independent from the failures remain
executable.

Plan repair

The plan repair is similar to the IxTeT search process
in the plan space. The root of the search tree 7 is
EzecutingPlan, partially invalidated. Planning is dis-
tributed, if necessary, on several cycles and each time
a new timepoint is inserted, it is constrained to occur
after the end of the current cycle. Planning during one
cycle is done one step at a time until it results into a
dead-end (there is no solution), or a solution is found
or a deadline is reached. This deadline corresponds to
the user defined time (u) allocated to the plan repair
part of the cycle time.

Some aggregation mechanisms allow a reduction of
the search space. In IxTeT, the establishing events are
looked for in LgcS; and executed resource propositions
are aggregated in one proposition.

This plan repair process is not guaranteed to find a
valid plan, yet it can avoid aborting execution and com-
pletely replanning at each failure. By invalidating only
a part of the plan, the amount of decisions is rather lim-
ited and a repaired plan may be found in a few cycles.
Plan repair is especially efficient and useful for tem-
porally flexible plans and plans with some parallelism.
This mechanism is also efficient to compensate for inad-
equate models of actions. Consider a move(Lq,Ly) ac-
tion, which is defined as a late preemptive action in the
IxTeT model. If the robot takes longer than expected in
the model (e.g. due to unexpected obstacle avoidance),
the action is interrupted. The controlled system returns
the intermediate location L; and, if some temporal flex-
ibility remains, a new move(L;,L2) is immediately in-
serted and launched. This example is representative of
the failures that frequently break plan execution.

Action

Each timepoint is associated to an execution time tezec.
If T is a start or goal timepoint, or an end timepoint of
an early preemptive action, tezec = Tjp. If T is an end
timepoint of a late preemptive action, tegzec = Tyup — tS.
If T is an end timepoint of a non preemptive action,
tezee = Tup. The executive determines the set of time-
points to execute during the current cycle (EzecTPs):
these timepoints are executable and their execution

time happens before the end of the cycle. FExecTPs
is updated after each timepoint execution to take into
account newly executable timepoints. The detail of a
timepoint execution depends on its type and timeouts
are raised when reports have not been received in time.

Complete replanning

Let us call Pts = ((Z), FAtS s Sts 5 Gts s Cts s Lts s Fts) the
plan obtained once execution is stopped. An initial plan
is extracted from P;_ as:

Pti = ((Z), @7 Sti’ Gti? Ctm 07 Fti)? with

Sy, = Si., Gy, = {g € Gy, /temporal constraints
on g are coherent with current time}, Cy, = {c €
Cy./c is a constraint just on variables appearing in St,
and Gy, }(Cy, notably contains constraints on origin and
horizon timepoints), and Fy, = Gy,.

POCL planning cannot be interrupted at any time
and come up with an applicable plan. Still we have
to guarantee that at the end of the replanning process,
there remains enough time to execute the solution plan
and meet the goal deadlines. We propose to add a spe-
cific flexible timepoint T°"? to P, that corresponds
to the end of the planning process. T¢"¢ is only con-
strained to occur between t; and the end of the horizon.
Each time a new timepoint is inserted by the planning
process, it is constrained to occur after T7¢"¢. Thus T 7%“1
decreases as new actions or new temporal constraints
are added, and there is not enough time to execute the
current plan if 774 < current time. Note however that
qugld can increase when backtracking.

The strategy is then to plan one step at a time until
it results into a dead-end, or a solution is found, or a
time limit [ is reached. [ is defined as [ = T — d, d
being a slack duration to save enough time at the end of
planning for cycle initialization. [ is updated after each
planning step. Planning is stopped when [ is reached
unless the next step corresponds to a backtrack node.
In that case, and if the next step increases [, planning
is pursued.

If planning is aborted without finding a solu-
tion, some goals are rejected and a new attempt is
done (Lemai 2004).

Integration and example of scenario

We illustrate the capabilities and the performances of
IxTeT with an example of a scenario for a rover with an
exploration mission. In such a domain, the quantitative
effects and durations can be estimated in advance for
planning but are accurately known only at execution
time (e.g. the actual compression rate of an image or
the actual duration of a navigation task), thus requiring
regular updates and look-ahead capabilities to manage
unforeseen situations and resource levels. We also il-
lustrate the advantage of using the 3DC+ algorithm in
order to produce a more robust plan and compare with
a plan without temporal controllability.

IxTeT has been integrated in the decisional level
of the LAAS architecture (Alami et al. 1998) and
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Figure 6: DALA GUI showing the goals of the explo-
ration mission.

used to control an iRobot ATRV (see the first section
and Fig. 8). We set up an exploration mission sce-
nario which requires the robot to achieve three types
of goals (see Fig. 6): “take pictures of specific science
targets” (in locations (0.5,-0.5), (4.5,-0.5), (1.5,-2.5)),
“communicate with a ground station during visibility
window” (W7[117—147]), and “return to location (0.5,-
0.5) before time 500”. Dala runs a 3 GHz Pentium
IV (1 GB memory) under Linux and is equipped with
the following sensors: odometry and a stereo camera
pair mounted on a pan&tilt unit (PTU). Five main
actions are considered at the mission planning level:
take_picture, move_ptu, move (Fig. 2), download_images,
communicate. The first three actions are performed by
Dala, while the last two are realistically simulated.

There are specific constraints attached to each tasks.
The pané:tilt unit must be warmed up ten seconds be-
fore it can move. During a move action (of the rover),
the camera must be pointed at a specific angle in or-
der to provide the best perception of the environment.
Thus the move action and the move_ptu action are
mutually exclusive, however the pan&tilt unit can be
warmed up during the “end of the move”. It allows us to
start a move_ptu action before the end of the move that
precedes it without “stopping” the move itself. Yet, to
do so, we need 3DC+ to correctly produce and execute
this plan. Without this, IxTeT produce a plan which
may shorten the duration of the move to its lower limit
and we will most likely get a temporal failure. You can
see on Fig.7 that in the top plan the end of two move ac-
tion is overlapped by a move_ptu action. Unfortunately
at this stage, the IxTeT Plan Viewer used to produce
these screen dumps does not show the wait introduced
by the 3DC+ algorithm. The plan on the bottom part
of the picture has been produced by over constraining
the move_ptu action to take place strictly after the move
action. This plan is clearly safe but less efficient and
flexible than the previous one.

The plan execution is controlled by both executives as
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Figure 7: Initial plan produced with the use of 3DC+
(top) and without (bottom) (note the flexibility left,
the dependencies and the parallelism).

follows. IxTeT decides when to start or stop an action
in the plan and handles plan adaptations. OpenPRS
expands the action into commands to the functional
level®, monitors its execution and can recover from spe-
cific failures. It finally reports to IxTeT upon the action
completion.

This mission (the corresponding initial plan with
3DC+ is shown in Fig. 7) has been executed by Dala
under IxTeT control (with 4 = 1s and total cycle
duration= 2s). The initial plan with 3DC+ was pro-
duced in 7.1s, and the plan without 3DC+ was pro-
duced in 4s. Each resulting run is different.

Figure 9 shows the duration of each phase of the cy-

5For the download_images and communicate actions, specific
procedures simulate the visibility windows and the gradual
download of images.



Figure 8: The robot Dala.
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Figure 9: Cycle duration of plans with 3DC+ (top) and
without 3DC+ (bottom).

cle for two different runs (one with 3DC+ and another
without). The two runs are different because the real
execution lead to more frequent failures of the move ac-

tion in the second run. Yet, we see that using 3DC+
during execution does not increase execution time too
much.

Discussion and Prospectives

If one looks at the current state of the art, few high
level planning systems have been integrated onboard
real robots while running complex navigation soft-
ware. Many architectures (such as Claraty (Estlin et
al. 2002)) provide a “decisional” level for such compo-
nents , but little has been done as far as deploying them
entirely on real systems. The main reason is probably
that despite the availability of good planning systems,
few of them integrate the proper plan repair and replan-
ning mechanisms. Still, the ROGUE system (Haigh &
Veloso 1998), for instance, performs planning for asyn-
chronous goals and execution monitoring enhanced with
learning capabilities. In (Beetz 2000), the authors pro-
pose a different approach where the plans themselves
specify the adaptation processes as subplans. In any
case, very few approaches explicitly handle time and
address the issue of temporal execution. The CASPER
system (Chien et al. 2000) (part of Claraty) performs
continuous planning interleaved with execution. State
and temporal data are regularly updated and potential
future conflicts are incrementally resolved using iter-
ative repair techniques. However this approach does
not handle conflicts which appear within the replan-
ning time interval. Other approaches such as IDEA
(Finzi, Ingrand, & Muscettola 2004) are more radical
and provide an architecture which seamlessly integrates
temporal planning and execution control: each compo-
nent can be seen as an agent running a reactive planner,
and sharing with the others parts of a global temporal
model specifying the “behavior” as well as the commu-
nication between agents.

We have presented in this paper the IxTeT system
which combines a temporal lifted POCL planner with a
temporal executive to integrate deliberative planning,
execution monitoring and replanning while respecting
real-time constraints. This approach cannot account
for all the possible execution failures in all their gen-
erality. Nevertheless, in many situations where some
temporal and resource flexibility has been left,one can
expect the presented repair techniques to greatly im-
prove the overall performance of the system by:

e reducing the number of complete replannings,

e improving the system reactivity to unexpected
events,

e taking into account new goals on the fly,
e managing the changes in the resources capacity,

e managing the wuncertainty in the model de-
scription (actions duration, resources consump-
tion/production).

Moreover, by implementing 3DC+ in IxTeT, we have
a better handling of temporal controllability, and pro-



duce plans which are more robust at execution time,
without a major degradation in performance.

We have conducted a number of field experiments.
Although preliminary, the current results are quite
promising. First, we show that planning with time and
resource combined with execution control, plan repair
and replanning can be used on real world problem. Sec-
ond it shows that such an approach can be deployed on
current hardware along with the “state of the art” nav-
igation software (stereo vision, terrain mapping, path
planning, visual odometry, etc).

Yet, IxTeT effectiveness can be increased by improv-
ing replanning strategies (rejected goals selection, state
update requests).

Despite the obvious application of systems such as Ix-
TeT to exploration probes and rovers, one can easily see
the possibilities it opens for service robotics (with the
added value of human robot interactions and problem
joint resolutions) and fields robotics, where planning
and execution control problems are also present.
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